Existence and Uniqueness for a Degenerate Parabolic Equation with L-data

نویسنده

  • F. ANDREU
چکیده

In this paper we study existence and uniqueness of solutions for the boundary-value problem, with initial datum in L1(Ω), ut = div a(x, Du) in (0,∞)×Ω, − ∂u ∂ηa ∈ β(u) on (0,∞)× ∂Ω, u(x, 0) = u0(x) in Ω, where a is a Carathéodory function satisfying the classical Leray-Lions hypothesis, ∂/∂ηa is the Neumann boundary operator associated to a, Du the gradient of u and β is a maximal monotone graph in R× R with 0 ∈ β(0).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Control for Degenerate Parabolic Equations

This paper considers the optimal control of a degenerate parabolic partial differential equation governing a di usive population with logistic growth terms. Assuming this population causes damage to forest and agricultural land, the optimal control is the trapping rate and the cost functional is a combination of the damage and trapping costs. We prove existence, uniqueness, and regularity resul...

متن کامل

Global Attractors for Degenerate Parabolic Equations without Uniqueness

In this paper, using theory of attractors for multi-valued semiflows and semiprocesses, we prove the existence of compact attractor for a semilinear degenerate parabolic equation involving the Grushin operator in which the conditions imposed on the nonlinearity provide the global existence of a weak solution, but not uniqueness. Mathematics Subject Classification: 35B41, 35K65, 35D05

متن کامل

Existence and Blow-up for a Nonlocal Degenerate Parabolic Equation

In this paper, we establish the local existence and uniqueness of the solution for the degenerate parabolic equation with a nonlocal source and homogeneous Dirichlet boundary condition. Moreover, we prove that the solution blows up in finite time and obtain the blow-up set in some special case. Mathematics Subject Classification: 35K20, 35K30, 35K65

متن کامل

The geometric properties of a degenerate parabolic equation with periodic source term

In this paper, we discuss the geometric properties of solution and lower bound estimate of ∆um−1 of the Cauchy problem for a degenerate parabolic equation with periodic source term ut =∆um+ upsint. Our objective is to show that: (1)with continuous variation of time t, the surface ϕ = [u(x,t)]mδq is a complete Riemannian manifold floating in space RN+1and is tangent to the space RN at ∂H0(t); (2...

متن کامل

On a Fourth-order Degenerate Parabolic Equation: Global Entropy Estimates, Existence, and Qualitative Behavior of Solutions

By means of energy and entropy estimates, we prove existence and positivity results in higher space dimensions for degenerate parabolic equations of fourth order with nonnegative initial values. We discuss their asymptotic behavior for t → ∞ and give a counterexample to uniqueness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998